
C4ISR Architectures II: A

Structured Analysis Approach for Architecture Design1

Lee W. Wagenhals, Insub Shin, Daesik Kim, Alexander H. Levis

System Architectures Laboratory, C3I Center, MSN 4D2, George Mason University
Fairfax, VA 22030

<lwagenha> <ishin>, <dkim>, <alevis>@gmu.edu

Tel: 703 993 1712; 703 993 1774; 703 993 1724; 703 993 1619

Fax: 703 993 1708

Abstract
A Structured Analysis based process for developing C4ISR architectures is presented. The

process demonstrates the feasibility of developing architecture descriptions that conform to the
C4ISR Architecture Framework based on the Structured Analysis paradigm that underlies the
concepts and definitions in the Framework. Furthermore, the process incorporates the derivation
of an executable model that can reveal the logical, behavioral and performance characteristics of
the architecture. The complete process is illustrated through an example involving the insertion
of a new technology in a large legacy system.

1 This work was supported in part by the Office of Naval Research under Grant no. N00014-00-1-0267 and by the
Air Force Office for Scientific Research under Grant no. F49620-95-0134.
To Appear in Systems Engineering, Vol. 3, No. 4, Fall 2000.

- 2 -

1. INTRODUCTION

This is the second of three articles on Command, Control, Communications, Computers,

Intelligence, Surveillance and Reconnaissance (C4ISR) Architectures. In the first article, [Levis

and Wagenhals, 00] we described the need for architectures, the role of the architect in producing

them, and described an approach to architecting information systems that was based on

Structured Analysis. We also described briefly the C4ISR Architecture Framework, version 2,

[C4ISR 97] and its products noting that the Framework purposely does not present or mandate a

process for producing those products. Finally, we postulated that two alternative, distinct

approaches may be taken to develop architectures and the Framework products. One approach is

based on Structured Analysis concepts and the other is based on Object-Oriented ones.

[Bienvenu et al., 00] Both approaches produce products that contain a great deal of information.

Unfortunately, these products are static representations of a dynamic system and therefore are

less than ideal for illuminating behavior and performance characteristics.

We have developed procedures for deriving from the information contained in the static

architectural products an executable model that can be used to demonstrate the behavior and

performance characteristics of the architecture. Furthermore, the executable model can be used

to verify the architecture design. Any changes that must be made in the executable model to get

it to exhibit the desired behavior must then be reflected in changes to the static representations.

In this article, we present an approach for developing the C4ISR Framework products based

on the Structured Analysis approach. We illustrate the approach with a commercial case study in

which a new technology is introduced for expanding the capability of the “pay at the pump”

systems available at most gasoline stations. This is an example of information technology

insertion in a large legacy system.

The remainder of this article is divided into six sections. Section 2 presents a process for

developing a C4ISR architecture using the Structured Analysis approach and then creating the

Framework products from that effort. An activity model is used to present the process. Section

3 describes the case study. In Section 4, we show how to convert the elements of the architecture

to the discrete event dynamic model, a Colored Petri Net. In Section 5, we use the example of

Section 3 to show how the executable model can be used to analyze the logical and behavioral

characteristics of the architecture. Section 6 describes how the executable model can be

- 3 -

extended to allow the architect to extract performance characteristics that can be discussed with

the user or customer of the systems that will be built in conformance with the architecture.

2. THE STRUCTURED ANALYSIS APPROACH

The starting point for defining this process is developing an activity model. Both IDEF02

and Data Flow Diagrams have been used. In both models, the context diagram contains a set of

documents and information as inputs or terminators and the set of Framework products as the

output or terminators of the process. The process has been divided into five steps or stages.

Each stage generates one or more of the Framework products. This allows for continuous review

and evaluation of the architecture design.

The first step in any architectural effort involves the collection of domain information. This

is designated as Stage 0 in the proposed process. In the C4ISR context, 12 types of documents

and information have been identified as candidates for this effort and they are listed in Table 1.

Once they are gathered, they form the input to the process and are represented as Terminators in

the Data Flow Diagram description of the process.

Table 1 Inputs to the Process Collected in Stage 0

(AV1) Purpose, Viewpoint (Problem Definition)

D1 Operational Concept Narrative

D2 Universal Joint Task List (UJTL)

D3 Current DOD Organization charts/ Joint, Services, Agencies

D4 Description of Organizational Relationships

D5 Textual description of Doctrine, Tactics and Operational Procedures

D6 List of Operational Information Elements

D7 Definitions of States and Events

D8 Description of System Functions

D9 Communication Systems Description

D10 Performance Attributes of Systems

D11 Migration Plans for Systems

D12 Description of Systems

2 IDEF0 stands for Integrated Computer Aided Manufacturing (ICAM) Definition Language 0; it is documented in
the Federal Information Processing Standard (FIPS) #183.

- 4 -

This gathering of domain information is analogous to an architect eliciting requirements and

desires from a client who wants the architect to design a new home. In the C4ISR context, this

requirements elicitation process can be a little more formal. The users (the operators) and the

customers (the acquisition executives) have a wealth of information about how the DoD does

business, including formal documents that define doctrine and tactics, formal organizational

structures, and descriptions and specifications of existing systems that may be incorporated in the

design of the architecture.

The list of source documents in Table 1 represents typical classes of information. As was

described in Levis and Wagenhals [00], the architecting process must start with a clear purpose

and viewpoint and an operational concept must be provided. Sources for these items may

include mission needs analyses, and operational requirements documents (ORDs) as well as

discussions with operators of the systems that are similar to the ones that will be defined in the

architecture. These documents and elicitations are listed as Purpose and Viewpoint, part of the

All Views Overview and Summary Information (AV-1) product and D1, Operational Concept

Narrative, in Table 1.

DoD has published the Universal Joint Task List (UJTL) that appears as D2. This list is a

high level functional decomposition of standard tasks and functions that are performed by DoD

organizations during military operations. DoD and its components also have standardized

organizational structures and relationships. They are described in standard command

relationship charts and standing operational plans and operational orders. These also are

important references to the architect and are listed as D3 and D4. As the architect delves more

deeply into the background domain information he/she can make use of DoD documents that

describe doctrine and tactics, techniques, and procedures (D5). In some cases, the architect may

be able to access studies about systems that reveal typical operational or system information

elements. Many previous architectural efforts contain this type of information. Furthermore,

documents describing standard message types also may be useful. These items are listed as D6,

List of Operational Information Elements.

As the architect elicits material, users of the systems often describe their vision of the

architecture in terms of events that the system must react to and various high level states that the

- 5 -

system will be in. Examples include readiness states and the events or conditions that can occur

that should cause the system to change states. These descriptions, listed as D7, are important to

the architectural design and may offer high level descriptions of desired behavior.

As the architect creates the system architecture views, information about potential systems

(D12) and their functions (D8) will be useful. A variety of documents provide technical

descriptions of current and future systems that can serve this purpose and provide performance

parameters of those systems (D10). In addition to the systems, descriptions of existing and

planned communications networks and links also are available to the architect (D9). Finally, the

architect may refer to documents that describe the planned evolution or migration of the system.

DoD planning guidance and defense plans are good sources for this information (D12).

The five stages of the process are shown in the Data Flow Diagram of Fig. 1. The diagram

also shows the input terminators as described in Table 1 and the output terminators which are the

C4ISR Architecture Framework Products. A list of products is given in the Appendix; for a

description, see [C4ISR, 97] or Levis and Wagenhals [00].

Stage 1 is shown in Fig. 2. While this is a very simple diagram, it represents a critical step in

the architecting process because it is the operational concept that guides the remaining stages of

the process, thus it is passed to the second stage as indicated by the “2” in the oval. The OV-1

product, the High Level Operational Concept Graphic, is produced in this stage.

Stage 2 is shown in Fig. 3. It has four terminators that provide inputs and one terminator that

is the output of the stage, the Command Relationship Chart (OV-4). In this stage, the architect

uses the Joint Universal Task List and the Operational Concept (as shown by the “2” in the oval)

to determine the functions that need to be performed to carry out the operational concept and

organizes them in a functional decomposition. The architect also uses the operational concept,

the list of potential organizations, and the organizational relationships to determine which

organizations to include in the architecture and the command relationships that will exist

between those organizations. These command relationship are documented in the Command

Relationship Chart, OV-4. These organizations have assets that are the systems that will support

the activities. The traditional or logical grouping of the organizations and their assets are used to

define operational elements and aggregate them into the operational nodes that will be depicted

in the operational node connectivity diagram.

- 6 -

Figure 1 Data Flow Diagram of the Five Stage Process

Complete
Stage 1

Operational
Concept

Graphic OV-1

Operational
Concept

(AV1 and D1)

Complete
Stage 2

Command
Relationship

Chart
(OV-4) Organizational

Relationships
(D4)

Organization List
(D3)

Universal Joint
Task List

(D2)

Communication
Systems

Description
(D9)

Migration
Systems

(D11)

System
Performance

Attributes
(D10)

System
Interface

Description
(SV-1)

System
Communications

Description
(SV-2)

Systems2
Matrix
(SV-3)

System
Information

Exchange Matrix
 (SV-6)

System
Evolution

Description
(SV-8)
Systems

Technology
Forecast
(SV-9)

System
Performance

Parameter
Matrix
(SV-7)

System/
Functions

(D8)
System

Descriptions
(D12)

Operational
Node

Connectivity
Description

(OV-2)

Operational
Information
Exchange

Matrix
(OV-3)

 Operational
Activity to

System Function
Traceability

Matrix (SV-5)
Physical Data
Model (SV-11)

Systems
Functionality
Description

(SV-4)

Doctrine,
Tactics and
Operational
Procedures

(D5)

Operational
Information
Elements

(D6)

States and
Events

(D7)

Operational
Rules Model

(OV-6c)

Activity

(OV–5)

Logical Data
Model
(OV-7)

Operational
Transition

Description
(OV-6b)

State

Model

Complete
Stage 3

Complete
Stage4

Complete
Stage 5

- 7 -

Figure 2. Process model of Stage 1: Develop the Operational Concept

Figure 3. Process Model of Stage 2.

In Stage 3, the architect performs the bulk of the structured analysis process that was

described in Levis and Wagenhals [00]. As shown in Fig. 4, the architect is engaged in three

major efforts. First, the functional architecture, composed of the activity model, the logical data

model, and the rule model are created based on the functional decomposition. The desired

behavior of the architecture is captured in the state transitions diagram. The concordance

process ensures consistency and completeness of all of these products. Secondly, the architect

creates the initial physical architecture composed of system nodes that contain systems, system

components, and system elements. Consistency and balance is maintained between the physical

and functional architecture views through two allocation processes, the third main activity of

Stage 3. In the allocation process, the architect evaluates the assets to be associated with the

Operational
Concept

(AV1 and D1)

Create
High Level

Operational
Concept Graphic

with Textual
Description

Operational
Concept
Graphic

OV-1

 2

Organization
List
(D3)

Operational
Concept

(AV1 and D1)

Organizatinal
Relationships

(D4)

Universal
Joint Task

List
(D2) Select

Functions

Create
Functional

Decomposition

Define
Operational

Elements

Determine

Assets

Select
Organizations

Determine
Organizational
Relationships

Command
Relationship

Chart
(OV-4)

Define
Operational

Nodes
 3

 2

- 8 -

operational elements. These assets are systems that perform system functions. The architect

decides which system functions should perform the operational activities. This in turn allocates

the activities in the activity model to those operational elements that own these systems. The

activities are also allocated to the functions those systems perform. This is the key step that

marries the operational and system architecture views together. All of the activities in stage 3

are highly coupled and an iterative process is used during this stage.

In Stage 4, shown in Fig. 5, the architect creates the remaining Operational Architecture

View products using the information and models created in Stage 3. Key parts of the analysis

needed to create the System Architecture View products are also done.

The Logical Data Model and the Needlines3 define the Operational Information Elements.

The allocation process assigned activities to operational elements and nodes. The activity model

contains the information flows between activities and, by the allocation process, between

operational nodes. Thus, the Operational Node Connectivity Description (OV-2) and the

Operational Information Exchange Matrix (OV-3) can be extracted from the combination of

activity model and allocation. The allocation of activities to system functions is documented in

the Operational Activity to System Function Traceability Matrix (SV-5). Using this allocation

and the activity model, the architect creates the System Functionality Description (SV-4) which

is a process model that uses the system functions as the processes or transformations. SV-4 and

the Logical Data Model (OV-7) can be used to create the Physical Data Model, SV-11.

Stage 5 is dedicated to completing the System Architecture View Products. As shown in Fig.

6, it requires inputs from both Stages 3 and 4. The System Information Elements are the

physical manifestation of the Operational Information Elements that were defined in Stage 4.

They can be defined from a combination of the Physical Data Model (SV-11) and the System

Activity Description (Data Flow Diagram of system functions). The allocation and initial

physical architecture allows the definition of the system nodes that the system information

elements flow between. Once the System Information Elements have been specified, the System

Information Exchange Matrix (SV-6) can be created. The characteristics of the System

Information Elements and Exchanges are used to guide the selection of the Communications

3 Needlines are defined in [C4ISR, 97] as requirements that are the logical expression of the need to transfer
information among nodes.

- 9 -

System including the LANs and WANs that will be included in the architecture. The architect

uses the Systems Communications Description (SV-4) that was obtained in Stage 0. Once the

LANs and WANs have been identified, the architect can create the System Interface Description

(SV-1).

Figure 4. Process Model of Stage 3

Allocates
Activities to
Operational
Elements

Determine
Needlines

Create
Logical Data

Model

Define
Logical
Rules

Create
Operational State

Transition
Description

Ensure
Concordance

Create
Activity
Model

Rule Model
(OV-6a)

Logical Data
Model
(OV-7)

STD
(OV-6b)

 2

Functional
Decomposition

Operational
Nodes

Operational
Elements and
Functional
Decomposition

 4

Allocate
Activities to
systems to

Define System
Functions

Define
System Nodes

Determine
Systems,
Elements,

Components

Define
Links

System/
Functions

(D8)

System
Desciptions

(D12)

Operational
Nodes

 5

Activity
Model
(OV-5)

Initial Physical Architecture

Assets

Doctrine,
Tactics, and
Operational
Procedures

(D5)

States and
Events

(D7)

- 10 -

Figure 5. Data Flow Diagram of Stage 4

Define
Operational
Information
Elements

Create
Operational

Node
Connectivity
Desciption

Create
Operational
Information
Exchange

Matrix

Create
Operational
Activity to
System

Function
Traceability

Matrix

Operational
Node

Connectivity
Description

(OV-2)

Operational
Infromation
Exchange

Matrix
(OV-3)

 Operational
Activity to

System Function
Traceability Matrix

(SV-5)

Physical Data
Model (SV-11)

Create
Physical Data

Model

Create
System

Functionality
Description

Systems
Functionality
Description

(SV-4)

 3

 5

Logical
Data Model

Allocation

Needlines,
Allocation and
Activity Model

Logical Data Model and
Needlines

Allocation and
Activity Model

Needlines,
Allocation and
Activity Model

Operational
Information
Elements

(D6)

- 11 -

Figure 6. Process Model of Stage 5

The System Interface Description (SV-1) describes the physical manifestation of the

Operational Node Connectivity Description (OV-2). It is based on the Initial Physical

Architecture that was developed in Stage 3. The Systems Communications Description (SV-2)

can be created using the LAN and WAN selections. It should also be coordinated with the

System Interface Description because it is a more detailed view of the Systems Architecture.

The LANs and WANs define the interfaces between the systems, system elements, and system

components. Once the interfaces have been defined, the System
2
 Matrix (SV-3) can be created.

Finally, the architect can create the System Evolution Description (SV-8), System Performance

Parameter Matrix (SV-7) and the System Technology Forecast (SV-9) using the Initial Physical

Architecture and the Migration Systems (D11) and System Performance Attributes (D10)

information that were developed in Stage 0. Clearly, there is a great deal of redundancy in the

Create
System

Technology
Forecast

Create
System

Information
Exchange

Matrix

Define
System

Information
Elements

Define
Interfaces

Create
System2

Matrix

Systems
Technology

Forecast
(SV-9)

System
Information

Exchange Matrix
 (SV-6)

Systems2
Matrix
(SV-3)

System
Communications

Description
(SV-2)

System
Interface

Desciption
(SV-1)

System
Evolution

Description
(SV-8)

Create
System

Evolution
Description

Create
System

Interface
Description

Create
System

Communications
Description

Select
LAN/WAN
Networks

Define
Performance
Parameter Set

Create
System

Performance
Parameter

Matrix

System
Performance

Parameter
Matrix
(SV-7)

 4

 3

Operational
Information
Exchange Matrix

Allocations and
Initial Physical Architecture

System Activity Description,
Physical Data Model,
Operational Information
Elements

Communication
Systems

Description
(D9)

Migation
Systems

(D11)

System
Performance

Attributes
(D10)

Operational Node Connectivity Description

 Initial Physical
Architecture

- 12 -

System Architecture View. The architect must maintain consistency (concordance) between

these products.

3. AN EXAMPLE OF THE PROCESS

The illustrative example is based on a relatively new product developed by the Mobil

Corporation called the Mobil SpeedPass. However, this is not an accurate description of the

system – it has been created for the express purpose of illustrating the architecture design

process, especially the case where a new information technology providing a new capability is

grafted on existing large legacy information systems. Consequently, it will be assumed that some

oil company (OilCo) has implemented a new system called FastPass. This example has been

chosen in lieu of a DoD example because of its familiarity to a large audience4. We start with a

description of the goal of the system and proceed through the five stages presented in section 2.

We assume that all of the initial research of Stage 0 has been completed and the input

documents collected. Part of this process is the gathering of information about the operational

concept. In this example, we assume that OilCo has been informed about a new technology that

allows information to be encoded in a small device and be retrieved by a small radio signal.

OilCo believes that such technology can be incorporated in gasoline pumps to make it more

convenient for drivers to purchase gasoline via a credit card account. Drivers would need to sign

up for the FastPass service and provide to OilCo the standard information contained on the credit

card they normally use to purchase gasoline. OilCo would store this information in a Central

database and issue the driver a FastPass device in the form or a rear window mounted tag or a

key chain. The device would contain a unique code that OilCo could match to the credit card

information in the central data base. The following Operational Concept Graphic (Fig. 7) is

created by the architect during Stage 1. As part of the analysis of the operational concept, the

architect establishes (with the client – OilCo, in this case) the desired behavior of the system.

4 The example has been used as a one-day classroom exercise by over 300 students working in teams of four.

- 13 -

3.1 Stage 1: Operational Concept

Figure 7. Operational Concept Graphic (OV-1)

Operational Concept Narrative: The Point of View (POV) taken is that of the Systems

Engineer responsible for the design of the FastPass implementation. Specifically, the Systems

Engineer is considering a key thread – the sequence of activities that take place when an

individual Driver pulls up at the pump and uses the FastPass system to get gas for his car. (This

Financial Institution

Driver
Driver enters bay
Drive Activates FastPass with device
After Permission, driver selects grade of gas
and fuels car
Driver leaves

Gas Pump

LAN

WAN

Check credit information
Authorize credit purchase
Update credit information

Turn on FastPass Light to
show process is working
Issue Permission to fuel
Print Receipt
Turn off FastPass Light

FastPass
light

Gas Station Office

OilCo Central Data Base

Retrieve Driver Information

- 14 -

helps establish the boundaries of the system being considered and for which the architecture will

be described. The boundaries are also shown in the operational concept graphic in Fig. 7.)

Assumptions:

Real gas stations have multiple bays, with each bay having two or four double sided pumps.

All bays but one are usually in the Self-Service mode. The other one is in Full Service mode and

does not include the FastPass service. For simplicity, we shall consider the operation of a single

pump equipped with the FastPass system.

The FastPass service is a new alternative to the traditional payment services: pay cash, pay

by credit/debit card inside the station, pay by credit/debit card at the pump. As a result, the

Systems Engineer need not worry about the details of the electronic accounting system used by

the gas station. He need only consider that these functions have been implemented and are

available to be part of the FastPass system.

The process can be described as follows: A Driver pulls up at one of the Self-Serve fuel

pumps equipped with FastPass system. If his car is equipped with the FastPass tag, then the

sensor on the pump senses its presence and reads the information on the tag. If the Driver has a

key-chain tag, he waves the tag in front of the sensor (1 to 2 inches away) and the sensor reads

the information. The sensor lights up.

The information read from the FastPass tag or key chain is decoded at the pump and is then

sent from the pump, through the LAN at the gas station, to the FastPass Central data base where

the relevant credit card information is retrieved. The request for authorization along with the

credit card data are then transmitted to the financial institution issuing the credit card. If the

request is approved, the fuel pump is enabled and the Driver can pump gas. If the request is

denied, the pump is not enabled and the process terminates with the FastPass light going off.

(Note that a simpler alternative is for the central data base to maintain a current list of invalid

credit card numbers, check the request against them, and issue an authorization accordingly)

If enabled, the Driver selects the grade of gas he desires and pumps gas until he turns off the

pump by throwing a switch. Then the cost of the sale is computed at the pump and the amount is

transmitted back to the financial institution where it is entered as a charge in the Driver’s

- 15 -

corresponding credit card account. A receipt is issued at the pump. The data about the sale are

entered in the electronic ledger of the gas station. The pump returns to the idle state.

Defining required behavior: From this description, it is possible to infer characteristics of

behavior desired in the architecture. We see that the system progresses through several steps or

states during the operation of the FastPass system by a customer. In addition, we see that there

are several stimuli and responses that take place between the Driver and the system.

Specifically, the system has an idle state when it is not in use. When a Driver arrives, he/she

presents the FastPass device, and the system acknowledges the detection of the device. The

system then goes through a process of retrieving the credit card data from the Central data base

and obtaining a credit authorization from the “financial institution”. It tells the Driver the result

of the credit check. There are two possibilities, credit is approved or not approved. If credit is

not approved, the Driver may not pump the gas and the pump returns to the idle state. If

approval is received, the Driver is instructed to select a grade of gas and to commence pumping.

The Driver must respond by selecting the grade and operating the pump including indicating

when he/she is finished by “flipping a switch”. Finally, the pump computes the total cost of sale,

provides a receipt to the Driver and sends the results to the financial institution. The financial

institution acknowledges the receipt and updating of financial accounts to the gas station. The

pump returns to the idle state.

Note that it is this description of behavior that is of prime interest to the architect’s clients.

This is often referred to as a key thread. In addition to producing all of the C4ISR Framework

products, we will create an executable model that is derived from the architecture that will

clearly demonstrate the desired behavior. Indeed, if the executable model does not yield the

desired behavior as expressed in the key thread, the architect must modify the architecture design

until it does.

3.2 Stage 2 Create the Functional Decomposition and the Organizational Structure

The following functions have been organized in the form of the Universal Joint Task List

(UJTL). In an actual DoD case, the architect will have to select the appropriate tasks from UJTL

and construct the hierarchy that is appropriate to the domain and that is consistent with the

UJTL. In this simple example, the functions that are the basis of the Functional Decomposition

are:

- 16 -

1. Validate Accounts

1.1 Sense FastPass
1.2 Retrieve Driver Information
1.3 Validate Credit

2. Operate Pump

2.1 Receive Authorization
2.2 Dispense Gas
2.3 Compute Cost of Sale

3. Prepare Billing

3.1 Request Charge
3.2 Print Receipt
3.3 Update Accounts

The Functional Decomposition is shown in Fig. 8. Note that not all of the functions in the

UJTL have been used. The architect selects only those functions that are necessary for the

purpose of the architecture.

Figure 8. Functional Decomposition

Operate FastPass
GasStation System

Validate
Accounts

Operate
Pump

Prepare
Billing

Sense
FastPass

Retrieve
Driver

Information

Validate
Credit

Compute
Cost of

Sale

Request
Charge

Update
Accounts

Print
Receipt

Dispense
Gas

Receive
Authorization

- 17 -

Organizations

For this example, to keep the dimensionality low, only four organizational entities are

considered as shown in Table 2. Each organizational entity has assets that are the basis for

systems in the systems view: The FastPass central data base is maintained by OilCo that

manages the FastPass system; the Gas Station has a pump, gas, and the electronic ledger for

recording sales of gasoline; the Financial Institutions that issue the credit cards used by the

Drivers through the FastPass system, and the Driver. Note that for simplicity, we will consider a

single pump. Considering multiple pumps complicates the logic of the operation substantially;

we will then have to consider the asynchronous arrival of Drivers, concurrent operations, etc.

While it is doable, it does not provide additional insight.

Table 2. Organizations and Assets

Organization Assets

OilCo FastPass Central Data Base
Gas Station Pump, Gas, Ledger

Financial Institution Financial Account Database
Driver FastPass Account, Credit Account

 Operational nodes and operational elements are selected from these organizations.

Operational nodes are graphical objects that will be depicted on the Operational Node

Connectivity Description. Each Operational Node will represent one or a collection of

operational elements

Table 3. Operational Nodes and Elements

Operational Node Operational Elements
Driver Driver

Gas Station Pump, Gas Station Office
OilCo OilCo FastPass Database

Financial Institution Financial Institution Account Database

The last activity of Stage 2 is to create the Command Relationship Chart, (OV -4). In this

case we know that OilCo provides a franchise to the Gas Station and provides the FastPass

account to the Driver. Both the Driver and the Gas Station have accounts with the Financial

- 18 -

Institution. The Driver and the Gas Station Interact with each other. These relationships are

depicted in the Command Relationship Chart of Fig. 9.

Figure 9. Command Relationship Chart

Stage 3 Create Functional Architecture and Initial Physical Architecture

Stage 3 begins with creating the three models that comprise the Functional Architecture: the

Activity Model (IDEF0), the Data Model (IDEF1X), and the Rule Model. These also are

Framework products Activity Model (OV-5), Logical Data Model (OV-7), and Operational

Rules Model (OV-6a), respectively.

One way to begin the Activity Model is to create an External System Diagram. The

perspective of this diagram is standing on the boundary of the system and looking outward at the

interactions with activities in the environment of the system. These external systems and

interactions are gleaned from the operational concept. The box representing the system is given

the index number A0 and the boxes representing the external systems represent the functions

these systems perform and are given index numbers A-01, A-02, … As with all IDEF0 boxes,

External System activities are expressed as verb phrases.

Figure 10 shows the External System Diagram for the FastPass System. There are two

external systems that interact with the FastPass System, the Driver and the Financial Institution.

The overall activity of each in relation to the FastPass system is expressed as a verb phrase. The

diagram shows that the Driver presents the FastPass Device to the System. This is modeled as a

control since it activates the FastPass system. The FastPass system interacts with the financial

institution in two ways. First, it sends a financial request in the form of an Authorization

Request to the financial institution to determine that the credit of the Driver is okay. The

Driver Gas
Station

Interacts

Financial
Institution

OilCo

Provides FastPass Provides Account

- 19 -

financial institution returns the Authorization request with either an approval or denial. The

returned authorization request is modeled as a control to the FastPass system because it

determines whether the Driver can purchase gasoline using the FastPass System or not. The

second financial request is in the form of a Request for Charging the Driver’s credit card account

for the purchase and crediting the gas station account with the amount of the sale. The Financial

Institution returns a Bank Transaction to the FastPass system with the results of this charging

activity. After the Driver has purchased the gasoline, the FastPass system provides a Receipt to

the Driver. The System also provides instructions to the Driver via the display. These are

modeled as controls to the Driver activity because the display provides direction to the Driver

activity.

Figure 10. External System Diagram

The External System Diagram is consistent with the operational concept and defines the

interfaces between the system and its environment. By itself, it can be used to discuss the

operation of the system with the customer to ensure all agree on the system boundary and

interactions. Once created, the traditional context diagram of the IDEF0 Activity model is easily

Operate
FastPass
System

A0P. 2

Authorization_TransactionFastPass_Device

Selection
Display

Receipt

Purpose: To describe the operations of the FastPass System
View Point: System Architect

Perform Driver
Activities

A-01

Provide
Financial
Services

A-02

Financial_Transaction

Bank_Transaction

- 20 -

obtained by deleting the External Systems from the diagram. The resultant context diagram is

shown in Fig. 11. The other pages of the IDEF0 model are shown in Figs. 12 through 15.

The Data Model is shown in Fig. 16. In general, each Input, Control and Output represents

an entity in the Data Model, although it is permissible to have any one of them represent an

attribute of an entity. The selection of the attributes and the relationships that determines the

migration of the Keys must be consistent with the activities in the IDEF0 model.

Figure 11. Context Diagram for the Activity Model

Figure 12. First Level of Decomposition

Purpose: To describe the operations of the FastPass System
View Point: System Architect

Bank_Transaction

Selection

FastPass_Device Authorization_Transaction

Display

Financial_Transaction

Receipt

Operate
FastPass
System

A0P. 2

Authorization_TransactionFastPass_Device

Selection

Display

Receipt

Validate
Accounts

A1P. 3

Operate Pump

A2P. 4

Prepare Billing

A3P. 5

Dispensed _Gas_Data

Financial_Transaction

Bank_Transaction

Bank_Transaction

Authorization_Transaction

- 21 -

Figure 13. Validate Accounts Page

Authorization_Transaction

Selection

Display

Dispensed _Gas_Data

Receive
Authorization

A21

Dispense Gas

A22

Compute Cost
of Sale

A23

Authorization_Transaction

Dispensed_Gas_Data
"on", grade,gallons

"off", grade, gallons

Gas_Pricing

FastPass_Device

DisplaySense
FastPass

A11

Retrieve Driver
Information

A12

Validate Credit

A13

Driver Credit Account

FastPass ID

Authorization_Transaction

- 22 -

Figure 14. Operate Pump Page

Figure 15 Prepare Billing Page

Receipt

Dispensed _Gas_Data

Request
Charge

A31

Print Receipt

A32

Update
Accounts

A33

Bank_Transaction

Bank_Transaction

FastPass_ID (FK)

FASTPASS_DEVICE
1

FastPass_ID
Name
Driver_Credit_Acct_Number (FK)

DRIVER_INFORMATION

Defines

Driver_Credit_Acct_Number

DRIVER_CREDIT-ACCOUNT

Quantity_Control
Grade
Transaction_Number (FK)
Driver_Credit_Acct_Number (FK)

SELECTION
1

Enables

Cost_of_Sale
Date_Time (FK)
Transaction_Number (FK)
Driver_Credit_Acct_Number (FK)
Gas_Station_Information (FK)
Quantity_Control (FK)
Grade (FK)

DISPENSED_GAS_DATA

1 1 1

Cost_of_Sale (FK)
Transaction_Number (FK)
Driver_Credit_Acct_Number (FK)
Date_Time (FK)
Gas_Station_Information (FK)

RECEIPT

1

Required_ForUsed_to_compute

Used_For

Included-in

Display-ID
Display_Content

DISPLAY

Triggers

Transaction_Number (FK)
Driver_Credit_Acct_Number (FK)
Approval

AUTHORIZATION_TRANSACTION

Transaction_Number (FK)
Driver_Credit_Acct_Number (FK)
Status
Cost_of_Sale (FK)
Date_Time (FK)
Gas_Station_Information (FK)

BANK_TRANSACTION
1

Triggers

Provides_info_to

Date_Time
Gas_Station_Information
Pricing

GAS_PRICING

Transaction_Number
Driver_Credit_Acct_Number (FK)

FINANCIAL_TRANSACTION
P

Transaction_Type

Used_in

Used_in

Provides_data

Used_to_Compute

Purpose: To describe the data structure of the FastPass System

- 23 -

Figure 16 Logical Data Model (OV-7)

For brevity, only the Rule Model associated with the Activity “Operate the Pump” is shown.

Note that the Rules represent the activation rules for the leaf functions of the IDEF0 model and

that the clauses of the rules match the entities and their attributes of the data model as well as the

inputs, controls, and outputs of the function for which they apply.

Rule for Activity A22: Dispense Gas

R22: If Authorization_Transaction.approval = true
 And (Selection. “on”, Selection.QuantityControl, Selection.Grade are Selected)
 Then
 (Dispensed_Gas_Data.Grade = Selection.Grade;
 Dispensed_Gas_Data.QuantityControl = Section.QuantityControl)
 And Display.Content = “When done, turn off the pump”;

The architect creates a State Transition Diagram for the FastPass System as shown in Fig. 17.

Note that this State Transition Diagram is consistent with both the models and the behavioral

description elicited during the domain information gathering stage. The states and the transitions

between them can be obtained by tracing a key thread through the IDEF0 model starting with the

arrival of a Driver at the pump.

The architect next turns to the process of allocating the activities of the functional

architecture to the operational elements and nodes that were selected in Stage 2 and selecting

each operational element to perform the activities. Table 4 shows the allocation of activities to

the operational elements. Notice that the nine leaf activities of the Activity model have been

assigned to four operational elements. “Update Account” and “Validate Credit” are each

assigned to two operational elements. Recall that the financial institution is outside the boundary

of the system, but interacts with it. Thus, the pump is responsible for the “Validate Credit”

activity although it is accomplished by the financial institution. Similarly, the “Request Charge”

will cause the financial institution to “Update Accounts” and will return the result to the Gas

Station Office where the ledger will be updated.

- 24 -

Figure 17. State Transition Diagram (OV-6b)

Pump Is Idle

Validating Credit
Do: Retrieve Driver
Information, Validate

Credit

Dispensing Gas
Do: Dispense Gas

Computing Cost of Sale
Do: Compute Cost of Sale

Printing Receipt
Do: Print Receipt
Request Charge

Car arrival[FastPass Driver]

/Sense FastPass

Credit approved
/Activate Pump

Finish Fueling /Deactivate
pump

Receipt printed

Cost of Sales calculated

Start

Credit disapproved

car arrival
[Non FastPass
Driver]

Error Detected

- 25 -

Table 4. Allocation of Operational Activities to Operational Elements

Operational Element Activities
Financial Institution

(Update Account)
(Validate Credit)

Gas Station Office Update Accounts
OilCo Retrieve Driver Information
Pump

Sense FastPass
Request Charge
Receive Authorization
Dispense Gas
Print Receipt
Compute Cost of Sale
Validate Credit

The architect also will allocate the Operational Activities to the systems. This is done by

matching the Operational Activities to the System Functions the systems can perform. Table 5

shows the type of information available to the architect (gathered in Stage 0) to support this

allocation process. The result of this allocation process is shown in Table 6.

Table 5. System Elements, System, and System Functions

System
Element

Functions

Driver FastPass Tag Provide FastPass Tag
Select Option

FastPass Sensor Sense FastPass Tag and Decode
FastPass ID

Pump Control Unit Control Operation
Sense Selection
Request Authorization
Request Charge

Message Display (at Pump) Display Message
Receipt Printer Print Receipt
Calculator Compute Cost of Sale
Gas Nozzle Valve Dispense Gas

Pump

Communication Unit Receive/ Transmit Signal
Sales Database Record Transaction Gas Station Office

Database
Communication Unit Receive/ Transmit Signal
FastPass Central Database Retrieve Driver Information FastPass Central

Database (OilCo) Communication Unit Receive/ Transmit Signal
Account Database Issue Authorization

Manage Database
Financial Institution’
Database

Communication Unit Receive/ Transmit Signal

- 26 -

Table 6. Allocation of Operational Activities to System Functions

Activities System Functions
Sense FastPass Provide FastPass Tag

Sense FastPass Tag and Decode FastPass ID
Retrieve Driver Information Sense FastPass Tag and Decode FastPass ID

Retrieve Driver Information
Validate Credit Request Authorization

Display Message
Issue Authorization

Receive Authorization Control Operation
Dispense Gas Sense Selection

Display Message
Dispense Gas

Compute Cost of Sale Display Message
Compute Cost of Sale

Request Charge Request Charge
Print Receipt Print Receipt
Update Account Record Transaction

Manage Database

The last processes of Stage 3 involve creating two forms of the initial physical architecture.

In the first form, the architect uses the operational nodes to construct the skeleton of the

Operational Node Connectivity Description. Needlines are connected between the operational

nodes indicating that operational information elements are passed between the operational nodes.

Figure 18 shows the skeleton of the Operational Node Connectivity Description.

Finally the architect creates the initial physical architecture composed of one or more

diagrams showing system nodes with systems, system elements and system components and the

communications links that connect them. The architect uses the Operational Node Connectivity

Description as a guide. These Operation Nodes with Assets are represented as system nodes in

the initial physical architecture. Figure 19 shows the initial physical architecture for the FastPass

system.

Driver Gas Station OilCo

Financial
Institution

- 27 -

Figure 18. Operational Nodes and Needlines

Figure 19. Initial Physical Architecture

3.4 Stage 4 Complete Operational Architecture Views and Create System Activity Models

During Stage 4, the architect completes the Operational Architecture View Products and

produces the physical manifestation of the Functional Architecture into the Systems

Functionality Description and a Physical Data Model. The first step in this stage is to define the

Operational Information Elements that will be represented in the Operational Node Connectivity

Description (OV-2) and the Operational Element Exchange Matrix (OV-3). The main source for

the operational elements is the Logical Data Model (OV-7). Each entity is a candidate for an

Operational Information Element. These are logical information entities that flow over needlines

between operational elements and nodes. The operational nodes and elements have been defined

in Stage 3 and the operational activities have been assigned to them. It is straightforward to

determine the entities that flow between the operational element. Table 7 lists the Operational

Information Elements and the Operational Elements that produce them. Note that in some cases

the Operational Element consists of an attribute of an entity in the Logical Data Model. For

example Grade of Gas is an attribute of the entity Selection. The Banking Transaction has been

Driver

Financial
Institution
Database

FastPass Central
Database

Gas Station Office
Database

Radio

Lan

Wan

Pump
Wan

- 28 -

added. It represents the information that is sent from the financial institution to the Gas Station

Office as part of the activity “Update Accounts.”

Table 7. Operational Elements

Operational Information Element Producing
Operational Element

Authorization_Transaction.Approval Financial Institution
Bank_Transaction.complete Financial Institution
Dispensed Gas Data Pump
Display Pump
Authorization_Transaction.request Pump
Driver Information OilCo
Grade of Gas (Selection) Driver
FastPass Device Driver
Quantity Control (Selection) Driver
Receipt Pump
Bank_Transaction.request Pump
FastPass ID Pump

It is now possible to complete the Operational Node Connectivity Description (OV-2) as

shown in Fig. 20. This figure shows the operational nodes and the needlines. Note that each

operational node contains a window that shows the operational activities that are performed at

the node. In addition, there is a window for each needline that shows the operational information

elements that are flowing between the operational nodes. One can view this product as a

morphed version of the IDEF0 model in which all of the leaf activities have been clustered into

their assigned operational nodes and the flows between the activities have been bundled into

needlines.

The information contained in the functional architecture models is also reflected in the

Operational Information Exchange Matrix (OV-3). Each row of the matrix specifies several

characteristics of one of the operational information elements. These characteristics include the

name and several parameters about its content, plus list the Operational Element and the

operational activity that produces it and the operational element and activity that receives it. The

Operational Information Exchange Matrix is shown in Table 8.

- 29 -

Figure 20. Operational Node Connectivity Description (OV-2)

Table 8. Operational Information Exchange Matrix (OV-3)
Information Description Information Source Information Destination

Operational
Information

Element
Media Size Unit

Operationa
l element Activity

Operational
element Activity

FastPass
Device

Micro
wave

8 Number Driver N/A

Pump Sense FastPass

FastPass ID Data 8 Number Pump Sense FastPass OilCo Retrive Driver
Information

Grade of Gas Data 1 Number Driver N/A Pump Dispense Gas
Quantity
Control

Data 10 Number Driver N/A Pump Compute Cost of
Sale

Authorization
Transaction.
Approval

Data 8 Number Financial
Institution

Validate Credit Pump Receive
Authorization

Banking
Transaction

Data 10 Number Financial
Institution

(Update
Accounts)

Gas Station
Office

Update
Accounts

Authoization
Requestt

Data 8 Number Pump Validate Credit Financial
Institution

(Validate Credit)

Request for
Charge

Data 10 Number Pump Request
Charge

Financial
Institution

Update
Accounts

Driver
Information

Data 9 Number OilCo Retrieve Driver
Information

Pump Validate Credit
Request Charge
Print Receipt

Display Data 19 Number Pump Sense FastPass
Operate Pump

Driver N/A

Dispensed
Gas Data

Data 19 Number Pump Compute Cost
of Sale

Gas Station
Office

Update
Accounts

Gas Station

Driver Pump OilCo

Financial Institution

 Activities
 Update Accounts

 Dispense Gas

 Sense FastPass
 Receive Authorization

 Compute Cost of Sale
 Print Receipt
 Request Charge
 Validate Credit

 Activities

Retrieve Driver
Information

 Activities

Gas Station Office

 Activities

(Validate Credit)
(Update Accounts)

For GSO

For Pump

FastPass
Selection

Display
Receipt

Authorization_Transaction.approval
Bank_Transaction

FastPass ID

Driver Information

Authorization_Transaction. Request
Bank_Transaction.request

Dispensed
Gas_Data

Provide FastPass
Select Option

Bank
Transaction

- 30 -

Receipt Docu
ment

2x4
”

Paper
string

Pump Print Receipt Driver N/A

Having completed all of the Operational Architecture view Products, the architect turns to

completing the System Architecture view. At this point is easy to produce the System Function

Traceability Matrix (SV-3) using the allocation information created in Stage 3. This matrix is

presented in Table 9. Note the many-to-many relationship that can exist between Operational

Activities and System Functions. For example, the Operational Activity “Retrieve Driver

Information” will be accomplished by two system functions and the System Function “Display

Message” will support four Operational Activities. Also note that an indexing scheme has been

applied to the System Functions so that each one is associated with the system that performs the

function. This grouping will aid in the development of the System Functionality Description.

Table 9. System Function Traceability Matrix (SV-3)
 Operational Activities

System System Functions

Sense
FastPass

A11

Retrieve
Driver
Information

A12

Validate
Credit

A13

Receive
Authoriz
ation

A21

Dispense
Gas

A22

Compute
Cost of
Sale

A23

Request
Charge

A32

Print
Receipt

A33

Update
Account

A34

Driver Provide FastPass
Tag

ο

 Select Option ο

Pump Sense FastPass
Tag 1.1

ο ο

 Request
Authorization 1.2

 ο

 Display Message
1.3

ο ο ο ο ο

 Sense Selection
1.4

 ο ο

 Dispense Gas
1.5

 ο

 Compute Cost of
Sale

1.6

 ο

 Request Charge
1.7

 ο

 Print Receipt
1.8

 ο

Gas
Station
Office

Database

Record Transaction

2

 ο

FastPass
Central

Database

Retrieve Driver
Information

3

 ο

Manage Database ο Financial
Institution
Database Issue Authorization ο

- 31 -

The next step is to complete the System Functionality Description (SV-4) which is an

Activity Model based on Data Flow Diagrams. This model will have the System Functions as its

transformations. The architect uses the IDEF0 model and the System Function Traceability

Matrix to create the Data Flow Diagram.

The Context Diagram is shown in Fig. 21. Notice that it preserves the original system

boundary with the Driver and the financial institution outside the system but interacting with it as

Terminators.

Figure 21. Context Diagram

The first level of decomposition is shown in Fig. 22. The decomposition principle was based

on grouping system functions associated with the major systems of the architecture. Thus there

is a transformation for the Pump system, a single transformation for the OilCo Central system,

and a single transformation for the Gas Station Office System. Data Stores are shown connected

to the latter two transformations that represent the OilCo Central Data Base and the Gas Station

Office Ledger, respectively.

The decomposition of the pump system functions is shown in Fig. 23. It is composed of the

eight system functions listed in the System Function Traceability Matrix for the Pump. The

architect must maintain a consistent mapping between the IDFE0 activity model of the

Operational Architecture view and the System Functionality Description since they are both

activity models of the same architecture, one from an operational point of view and the other

from a systems point of view. This means that for each System Function that has a one-to-one

Operate

FastPass
System

FastPass Device

Selection

Display

Receipt

Purpose: To describe the System Functions of the FastPass System
View Point: System Architect

Driver Financial
Institution

Authorization_Transaction

Bank_Transaction

Authorization_Transaction

Bank_Transaction

- 32 -

mapping to an Operational Activity, inputs and controls of the IDEF0 activity should map to the

inputs of the transformation in the system model and outputs of the IDEF0 activity should map to

the outputs of the transformation. If there is a one-to-many mapping from the operational

activity to the system functions, then the inputs and outputs to the aggregate of the system

functions should map to the input, controls, and outputs of the operational activity. The system

functions (transformations) Sense Selection and Display, are examples of this one-to-many

mapping. On the other hand, if the mapping from the operation activities to the system function

is many-to-one, as is in the case of the system function Display, then the aggregate of the inputs,

controls, and outputs in the operational activity should map to the inputs and outputs of the

single system activity. The choice of a single termination for Display reflects the architect’s

decision to have a single display system element, such as an LCD, that tells the customer that the

FastPass Device has been decoded, the FastPass account data has been retrieved (or is not

available), the credit has been (or not) validated, and the cost of the sale.

Figure 22. First Level of Decomposition

The architect also creates the Physical Data Model (SV-11). It describes the physical

manifestation of the entities in the Logical Data Model as it describes the actual messages that

are flowing in the Data Flow Diagram and the data that are in the Data Stores. A tabular format

FastPass_Device
Selection

Display

Receipt

Driver Information

Dispensed _Gas_Data

Authorization_Transaction
Bank_Transaction
Authorization_Transaction

Bank_Transaction

Financial
Institution

Driver

FastPass_ID

 FastPass Central Database

Driver Information

 1
Perform
Pump

System
Functions

 3
Record

Transaction

 2
Retreive

Driver
Information

 Sales Database

Bank_Transaction

 Gas_Pricing

- 33 -

is used to list each message or record and the fields of each. Table 10 shows the Physical Data

Model for the FastPass system.

Figure 23. Decomposition of the “Perform Pump System Functions” Transformation.

FastPass_Device

Selection

Display

Receipt

Authorization_Transaction

Bank_Transaction

Authorization_Transaction

Dispensed _Gas_Data

1.1
Sense

FastPass
 2

FastPass_ID

Driver Information

1.2
Request

Authorization

1.4
Sense

Selection

1.5
Dispense Gas

1.6
Compute

Cost of Sale

1.7
Request
Charge

1.8
Print Receipt

1.3
Display

Message

Financial
Institution

Driver

Selection

 3

Dispensed Gas

 Gas_Pricing

- 34 -

Table 10. Physical Data Model

Messages:

Records Fields Format
Selection - Quantity Control

- Grade of Gas
Numeric(10)
Numeric(1)

FastPass Device Data - FastPass ID (Encrypted) Numeric(8)
Dispensed Gas - Driver Credit Account Number

- Transaction_Number
- Quantity Control
- Grade of Gas

Numeric(8)
Numeric(10)
Numeric(10)
Numeric(1)

Bank_Transaction - Gas Station Office Account
- Status
- Cost of Sale
- Transaction_Number

Numeric(16)
Boolean
Numeric(10)
Numeric(10)

Authorization_Transaction - Transaction_Number
- Driver Credit Account
- Approval Content

Numeric(10)
Numeric(10)
Boolean

Dispensed Gas_Data - Driver Credit Account Number
- Transaction_Number
- Cost of Sale
- Quantity Control
- Grade of Gas

Numeric(8)
Numeric(10)
Numeric(10)
Numeric(10)
Numeric(1)

Bank_Transaction.Request - Driver Credit Account
- Gas Station Office Account
- Cost of Sale
- Transaction_Number

Numeric(16)
Numeric(16)
Numeric(10)
Numeric(10)

Receipt - Gas Station Name
- Gas Station Address
- Date
- Driver Credit Account
- Name
- Grade of Gas
- Quantity Control
- Cost of Sale

Char(40)
Char(40)
Numeric(6)
Numeric(16)
Char(40)
Numeric(1)
Numeric(10)
Numeric(10)

Data Stores:

Records Fields Format
Driver Information
(FastPass Central Data
Base)

- FastPass ID
- Name
- Driver Credit Account Number

Numeric(8)
Char(40)
Numeric(16)

Sales Data Base - Gas Station Office Account
- Sales History

Numeric(16)
Numeric(10)

Gas Station Office
(Gas_Pricing)

- Gas Station Office ID
- Gas Station Name
- Gas Station Address
- Gas Unit Price

Numeric(16)
Char(40)
Char(40)
Numeric(10)

Display:
Records Fields Format

- 35 -

Display - Display ID
- Message

Numeric(2)
Char(40)

3.5 Stage 5: Complete System Architecture Views

In Stage 5, the architect completes the System Architecture view products, drawing on the

knowledge and information created in the earlier stages and adding new refinements such as

details of the communications architecture, descriptions of interfaces, and future migrations,

capabilities, and technologies. Again, the architect must ensure that consistency is maintained

across all products.

The architect begins by defining the System Information Elements. These are consistent with

both the Logical Data Model and the Physical Data Model. The architect specifies attributes for

each System Information Element as shown in Table 11.

Table 11. System Information Elements

System Name Content Media Data/Media
Format

Security Frequency

Selection Data ASCII Plain Dynamic Driver
FastPass Tag Microwave Radio Signal Secure Dynamic
FastPass ID Data ASCII Secure Dynamic
Dispensed Gas_Data Data ASCII Plain Dynamic
Cost of Sale Data ASCII Plain Dynamic
Request for Charge Data ASCII Secure Dynamic
Driver Credit Account Data ASCII Secure Dynamic
Receipt Document Text Plain Dynamic

Pump

Message Display Text Plain Dynamic
Gas Station Office
Database

Bank_Transaction Data ASCII Plain Dynamic

FastPass Central
Database

Driver Information Data ASCII Secure Dynamic

Authorization_
Transaction

Data ASCII Secure Dynamic Financial
Institution
Database Bank_Transaction Data ASCII Secure Dynamic

The architect uses the information about the System Information Elements to select the types

of LANs and WANs for the architecture. These are added to the Initial Physical Architecture as

shown in Fig. 24.

The architect has sufficient information to create the System Interface Description (SV–1).

An Intra-System view (Node-Edge to Node-Edge) is shown in Fig. 25.

- 36 -

If necessary, the architect can expand the communication system architecture of the System

Interface Description and produce the Systems Communications Desciption (SV-2). An example

is shown in Fig. 26.

Figure 24. LAN/WAN Selections

Driver

Financial
Institution
Database

FastPass Central
Database

Gas Station Office
Database

Radio link

Lan

Wan

Pump

Wan

10 Mbps
TCP/IP

56K/T-1 Link
TCP/IP

56K/T-1 Link
TCP/IP

Gas
Statio

n

FastPass
Central

Database T-1 link

Banking
Support
Node

LAN
(10 Mbps,
TCP/IP)

56K link

Gas Station
Support
Node

FastPass
Service
Support
Node

Pum
p

Financial
Institutions
Database

T-1 link

 ATM Backbone
 (TCP/IP)

FastPass
Device

Driver
Node

Microwave

- 37 -

Figure 25. System Interface Description

- 38 -

Figure 26. System Communications Description

The Communications System helps specify the interfaces between the System Nodes,

Systems, System Elements and System Components. The System
2
 Matrix (SV-3) is a compact

product that tabulates this aspect of the architecture as shown in Fig. 27. The architect

determines the types of interfaces and creates a key that is used to fill out the matrix.

The System Information Exchange Matrix (SV-6) provides in tabular form much of the

information provided in the System Functionality Description and the Physical Data Model.

Like the Operational Information Exchange Matrix, it associates the System Information

Elements with the System Functions of the system activity model, the Data Flow Diagram. It

also provides important attributes of each System Information Element. The format of the

Packet Switch (X.25)

ATM/Frame Relay ATM/Frame Relay

Router

56K

Ethernet

Router Router

Gas Station
 Office Database

Ethernet

Financial
Institution
Database

Ethernet

FastPass
Central

Database

Terminal Terminal

Pump
1

T-1 link
TCP/IP

T-1 link
TCP/IP

MicroWave

FastPass Device

- 39 -

columns of the matrix is Input, System Function, Output. An example of the System Information

Exchange Matrix is shown in Table 12. This product must be consistent with all other products.

For example, the requirements for security must match the interface description of the System
2

Matrix

Figure 27. System
2
 Matrix

If required, the architect may also create the System Performance Parameter Matrix (SV–7) ,

the System Evolution Description (SV-8), and the System Technology Forecast (SV–9) as shown

in Tables 13 and 14 and Fig. 28.

Driver

Driver
Pump

Pump C1 M1

Gas Station
Office Database

FastPass Central
Database

Financial
Institution
Database

• Status
Existing Interface -----------S1

• Security Classification
Public Key--------------------C1
Plain--------------------------- C2

• Means
Radio ------------------------- M1
56 K link X.25------M2
T1 Link Frame Relay/ATM------------M3
10/100 MBPS LAN----------M4

S1 C1
M2, 3, 4

C1 M2, 3, 4

Gas Station
Office Database

FastPass
Central
Database

Financial
Institution
Database

S1 C1
M2, 3, 4

S1 C1 M2

- 40 -

Table 12. System Information Exchange Matrix
Input System

Function
Output

System
Name

Content Media Data/
Media
For-
mat

Sec
urity

Freq-
uency

 System
Name

Content Media Data/Me
dia
Format

Sec-
urity

Freq
-
uen
cy

Driver FastPass
Tag

Microw
ave

ASCII Secure Dyna
mic

Sense
Fast-Pass
Tag

Pump Fast-Pass
ID

Data ASCII Sec-
ure

Dyn
amic

Activate/
Deactivate
Signal

Data Binary Plain Dyna
mic

Pump

Dispensed
Gas Data

Data ASCII Plain Dyna
mic

Display
Message

Pump Message Dis-
play

Text plain Dyn
amic

Pump Cost of Sale Data ASCII Plain Dyna
mic

FastPass
Central
Database

Driver
Information

Data ASCII Secure Dyna
mic

Print
Receipt

Driver Receipt Docu-
ment

Text plain Dyn
amic

Driver Selection Data ASCII plain Dyna
mic

Financial
Institution
Database

Authoriza-
tion.
Approval

Data ASCII Secure Dyna
mic

Pump Activate/
Deactivate
Signal

Data Binary Plain Dyn
amic

Activate/
Deactivate
Signal

Data Binary Plain Dyna
mic

Pump Dispensed
Gas Data

Data ASCII plain Dyn
amic

Pump

Selection Data ASCII plain Dyna
mic

Dispense
Gas

Gas
Station
Office
Data
base

Dispensed
Gas Data

Data ASCII plain Dyn
amic

Pump Dispensed
Gas Data

Data ASCII plain Dyna
mic

Compute
Cost of
Sale

Pump Cost of
Sale

Data ASCII Plain Dyn
amic

Pump Dispensed
Gas Data

Data ASCII plain Dyna
mic

Financial
Institution

Bank_
Transaction

Data ASCII Secure Dyna
mic

Record
Trans-
action

Gas
Station
Office
Data
base

Trans-
action

Data ASCII plain Dyn
amic

Pump Driver
Information

Data ASCII Secure Dyna
mic

Request
Author-
ization

Fin
ancial
Institut
ion
Data
base

Authorizati
on.
approval

Data ASCII Secure Dyn
amic

Cost of Sale Data ASCII Plain Dyna
mic

Pump

Driver
Information

Data ASCII Secure Dyna
mic

Request
Charge

Fin
ancial
Institut
ion
Data-
base

Request
for Charge

Data ASCII Secure Dyn
amic

FastPass
Central
Database

FastPass ID Data ASCII Secure Dyna
mic Retrieve

Driver
Inform-
ation

Pump Driver
Inform-
ation

Data ASCII Secure Dyn
amic

- 41 -

Table 13. System Performance Parameter Matrix

System Name Performance
Parameters

Base Line Objective

Pump FastPass detection
accuracy

N/A

99.9%

FastPass
Central

Database

Driver Information
verification time

N/A Limit less than 3
seconds

Financial
Institution
Database

Credit Validation Time 3 seconds N/A

Figure 28. System Evolution Description

Table 14. System Technology Forecast

Nationwide
Distributed
FastPass
Service
System

Add Extended Products Service
(Gas, Grocery, Other Services)

Add Flexible Account
Service
(Credit card, Debit

V 1.0

+6 Mon +18 Mon +36 Mon +48 Mon

V 2.0 V 3.0 V 4.0

Legacy
System

Area/Product/Account
Limited FastPass
 Service System

Add Nationwide Availability

- 42 -

Technology Area
& Capabilities

0-6 Months 6-12 Months 12-18 Months 18+ Months

Security Public key
algorithm

Distributed
Heterogeneous
Database

Middleware and/or
proprietary interface

Dynamic
active DBMS

Satellite
Communication

World wide DAMA (Demand Access
Multiple Access) ground terminal migrate
into WAN

OilCo Subscriber
Roaming

System wide roaming across the boundary
of home service area

International roaming across
the boundary of domestic
service area
Heterogeneous DBMS

4. SYNTHESIS OF THE EXECUTABLE MODEL

It is possible to create an executable model of the architecture using the information and

models produced during Stage 3 of the process. In the first article of this series, [Levis and

Wagenhals, 00] we described the creation of the executable model as the synthesis phase, in

which the information developed in the analysis phase is synthesized into an executable model.

In this section, we describe how to synthesize such a model and illustrate how it can be used to

verify that the behavior of the architecture matches the desired one. The discrete event system

modeling paradigm is used, and we use Colored Petri Nets for creating the executable model of

the architecture. The choice of modeling paradigm is dictated by the nature of the processes

being modeled – in this case, decision processes and asynchronous events.

4.1 Colored Petri Nets

Information Systems are dynamic in nature. Events occur that trigger the execution of

functions and many functions can be executed concurrently. An executable representation of the

system illustrates the dynamic behavior and permits the evaluation of time-related measures of

performance. It also enables the formal analysis of the model to determine its logical and

behavioral characteristics. There exist several graphical modeling approaches that allow a

dynamic representation of discrete event systems. Colored Petri Nets [Jensen, 92], Finite State

Machines, and Behavior Diagrams, Queuing nets are examples of such approaches.

The basic conversion of an Activity model into a Petri Net was described in Levis and

Wagenhals [00]. Petri Nets consist of places, transitions, directed arcs and tokens. In Colored

Petri Nets, the tokens are distinguishable; they are characterized by their color: an attribute

- 43 -

vector is associated with each token. The assignment of values to the attributes from their

respective domains specifies the color of the token. Color sets are associated with places; they

specify which token can reside in that place. Complex enablement conditions can be specified on

the arcs between input places and transitions. Each input arc inscription specifies the number and

type of tokens that need to be in the place for the transition to be enabled. The output arc

inscriptions indicate what tokens will be generated in an output place when a transition fires.

Furthermore, guard functions associated with transitions are allowed. These guard functions

specify additional conditions that must be satisfied, i.e., in addition to those inscribed on the arcs,

for a transition to be enabled. Code segments can be associated with transitions. These code

segments can represent the function modeled by the transition and complement the output arc

inscriptions.

Each Colored Petri Net model has a Global Declaration node associated with it that contains

the definitions of all Color Sets and their associated domains and the definition of variables. It

becomes apparent then that much of the data in the data dictionary of an architecture appears in

the global declaration node of the Colored Petri Net model.

The use of Colored Petri Nets to develop an executable model from the Structured Analysis

models can be described as follows.

4.2 Implementation sources

The executable model is derived from four static models of the architecture: the activity

model (IDEF0), the data model (IDEF1X), the rule model, and the state transition diagram.

These four models are tightly coupled and it is assumed that they are consistent with one another

based on a formal concordance process. Elements from each are transferred to the Colored Petri

Net model. It is important that no additional information be incorporated in the CP net model

that is not traceable to one or more of these four models. If it becomes necessary to make such

additions or to make changes to the CP net model to make it execute properly, these changes

must be also made in the static models and the C4ISR Architecture Framework products that are

derived from them.

- 44 -

4.2.1 Implementation sources from IDEF0

One starts with the activity model. The CP net has the same hierarchical structure as the

activity model. It has the same functional decomposition. The hierarchy page of the

Design/CPN model is shown in Fig. 29. Note its similarity to the functional decomposition

shown in Fig. 8.

Figure 29 Hierarchy Page of FastPass Architecture CP net Model

The first page of the hierarchy is called the environment page and is similar to the External

System Diagram of Fig. 10. The CP net model of the environmental page is shown in Fig. 30.

- 45 -

Figure 30. External System Diagram Representation in Design/CPN

Each IDEF0 activity is converted into a transition; each IDEF0 arrow connecting two activity

boxes is replaced by an arc-place-arc combination, and the label of the IDEF0 arc becomes the

color set associated with the place. To illustrate this conversion, the IDEF0 model for the first

level of decomposition is shown in Fig.31 and the corresponding CP net model page is shown in

Fig. 32

Figure 31. FastPass System IDEF0 Model

Authorization_TransactionFastPass_Device

Selection

Display

Receipt

Validate
Accounts

A1P. 3

Operate Pump

A2P. 4

Prepare Billing

A3P. 5

Dispensed _Gas_Data

Financial_Transaction

Bank_Transaction

Bank_Transaction

Authorization_Transaction

- 46 -

Figure 32 FastPass Color Petri net Model

Substitution Transitions are transitions that represent a subnet appearing in a child page in a

Hierarchical CP net. They are used for each IDEF0 activity that is decomposed. The CP net

page for the “Validate Accounts” activity is shown in Fig. 33.

Figure 33. Color PetriNet FastPass System (Validate Accounts)

- 47 -

In order to execute the CP net model, it is necessary to provide the stimuli sources and

receptor sinks for the external systems that interact with the system. The architect has several

choices. As a first choice, the architect can play the role of each external system by manually

providing and removing tokens that represent the inputs and response of the external systems as

the simulation is run. For example, the architect would place a token in the input place that

represents the Fast Pass Device and start the simulation. The simulation would proceed to the

point where the Authorization Transaction token was generated in the output place. The

architect would remove this token and add the response of the Financial Institution in the

Authorization Transaction input place and continue the simulation. It would run until it required

a Selection input from the Driver. The architect would continue testing the execution of the

model in this start and stop manner until the Driver received the receipt and the accounts were

updated. An alternative is for the architect to create additional CP net pages that model the

actions of the external systems as they interact with the architecture model. These pages are

connected to the appropriate input and output places of the architecture model. We have chosen

this option in the example.

The CP net model page of the Driver is shown in Fig. 34. The arrival of a Driver will be

simulated by placing a token in the “Driver In” place. This token contains as attributes the

FastPass device number plus the grade of gas and the number of gallons the Driver will pump.

The transition named Present FastPass represents the Driver presenting the FastPass device to the

pump. The Driver receives the various messages from the pump in the “Display” place. Some

of the display messages are simply informative, i.e. “Welcome to FastPass,” and others provide

prompts to the Driver. We model the Driver’s response to the prompts. Thus, there is a

transition that models the Driver’s response to the prompt to make a selection and a transition

that represents the Driver stopping the pump when he is done. Finally, we model the Driver

receiving the receipt.

The model of the Financial Institution is quite simple as shown in Fig. 35. It contains two

transitions. One represents the authorization process and the other the updating of the accounts

process.

Care must be taken in constructing the models of the external systems. Our goal is not to

model all of their actions but only the interactions they have with the architecture model.

- 48 -

Making the external system models as simple as possible avoids having unnecessary complexity

in the overall CP net model that can increase the analysis and evaluation effort unnecessarily .

4.2.2 Implementation sources from IDEF1X

In the set of static architecture models, the IDEF1X data model describes the details of the

input, controls, and outputs, of the IDEF0 activity model. The data model shows the

composition of the data entities in terms of each entity’s attributes and the relationships between

them. The places in the CP net model will contain tokens that represent these entities. The type

of tokens that each place can hold must be declared in the Global Declaration Node. Thus the

IDEF1X entities are used to derive the names of color sets in the Global Declaration Node as

shown in Fig. 36.

Figure 34 CP net Model of the Driver External System

- 49 -

Figure 35 CP net Model of the Financial Institution External System

- 50 -

Figure 36. Global Declaration Node

We begin the construction of the color sets in the global declaration node by declaring atomic

color sets Int (for integer), Boolean, and String. These will form the basis for the attributes that

make up the color sets that will be used to specify the type of token each place can hold. Color

sets that will be assigned to places are formed by using tuples created using the “product”

constructor. Each color set that is assigned to a place has the same number and type of attributes

as shown in the data model. In addition to the color set declaration, variables are associated with

- 51 -

the color sets so they can be used in the arc inscriptions that implement the rules of the rule

model.

4.2.3 Implementation sources from the Rule Model

The information contained in the data model is used to specify the color sets and their

respective domains, while the rules in the rule model result in arc inscriptions, guard functions,

and code segments. In this example, all rules are expressed as arc inscriptions and guard

functions.

4.2.4 Implementation sources from the State Transition Diagram

The State Transition Diagram was created by following a key thread through the IDEF0

model. It reflects the initial conditions for the CP net model, the states the model should

progress through from the initial state, and indicates dialog between the system and the entities in

the environment. It represents the behavior that the architect has created in the model and should

be consistent with the behavior desired by the client. It will be used to verify that the model

executes property.

4.3 Integration

The process of deriving the executable model invariably leads to some revision of the static

models. Indeed, in creating the FastPass example, several minor changes had to be made in the

models after undesired and unnecessary behavior was found in the executable model. It is most

important that discipline be exercised so that any change introduced at the executable model

level is reflected back in the static models. In this way, a documented and easily reviewed

representation of the architecture can be maintained (traceability.)

The executable model becomes the integrator of all the information; its ability to execute

tests the logic of the model. The model can be executed to check its logical consistency, that is,

to check whether the functions are executed in the appropriate sequence and that the data needed

by each function are appropriately provided.

Since Colored Petri Nets with their dense annotation are not easily understandable by the

information system users, all the information gathered in the design and exploitation of the

executable model needs to be brought back into the static models. This annotated and validated

representation now constitutes a sound basis for system development.

- 52 -

5. LOGICAL AND BEHAVIORAL EVALUATION OF THE ARCHITECTURE

Once the executable model of the architecture has been created and debugged, it can be used

to evaluate the architecture. Of course the model can be run in the simulation mode to verify its

logical and behavioral properties. But in addition to simulations, if Design/CPN5 has been used,

it is possible to quickly evaluate the behavior of the architecture using the built-in state space

analysis tools. These tools have two main components, the occurrence graph analyzer and the

state space report.

Design/CPN can generate the full occurrence graph for the FastPass architecture. It is shown

in Fig. 37. It is a directed graph with nodes and arcs. Each node is numbered and also shows the

number of predecessor and the number of successor nodes (e.g. 1:2 means the node has one

predecessor and two successors). Each node represents a state of the CP net defined by the set of

markings (tokens) of each place in the CP net. When Design/CPN creates the occurrence graph,

it generates two types of information. First, it displays a lists all of the tokens in all of the places

in the model for each node in the occurrence graph. With each arc, it displays the name of the

transition that fired causing the change of state and the bindings that enabled the transition in that

firing. These displays can be shown or suppressed as desired by the user.

If the state space of the CP net is finite and small enough to be generated by the computer

resources available, Design/CPN can generate all of the states that can be reached from an initial

state by any allowable firing sequence. If the occurrence graph has one or more final states, then

any path from the initial state to a final state represents a potential simulation run of the CP net.

Thus the occurrence graph exhaustively shows all of the ways the model can execute from a

given initial condition, i.e., it subsumes all the possible state transition diagrams that start from

the same initial state. Thus it can show all behavior for a given initial state. This description of

behavior can be compared with the desired behaviors elicited from the clients during the domain

information gathering stage. Furthermore, new and potentially acceptable behaviors can be

discovered and conveyed to the client.

5 Design/CPN is a software package developed and distributed by the University of Aarhus, Denmark. It has an
Editor, a Simulator, and a set of analysis tools. See Kristensen et al., [98].

- 53 -

Figure 37 Occurrence Graph of FastPass Architecture

A review of the occurrence graph of the FastPass architecture shows that it is consistent with

the desired behavior. To aid in reading the graph, the detailed displays have been suppressed,

and the transitions from state to state have been labeled with appropriate descriptors based on the

firing information provided by Design/CPN. From the single initial state, the arrival of the

- 54 -

Driver, the execution sequences to state 13. The transitions correspond to those described in the

State Transition Diagram of Fig. 17 which represents the clients desired behavior. In state 13,

the Driver has finished pumping the gas and the pump has computed the final cost of sale. At

this point, two process threads occur concurrently. The first thread is the printing of the receipt

followed by the Driver taking the receipt. The second thread is the pump sending the business

transaction (charge request) to the Financial Institution, the latter updating its accounts and

returning the business transaction, and the gas station updating its local account.

The fact that there are concurrent threads is reflected in the occurrence graph by the set of

branches and joins starting from State 13. From this state there are 9 paths through 11 states.

Each path represents a feasible sequence of state changes that can occur as a result of the two

concurrent threads. The nine paths represent all of the ways these two concurrent and

independent threads can be interleaved. An important observation is that each path terminates in

the same final state. This means that the two threads are independent, that is one cannot effect

the other. We know that the same receipt is printed and the accounts are updated in the same

way regardless of the sequence of firings

Every path through the occurrence graph is consistent with desired behavior. Because the

occurrence graph contains every possible sequence of state changes from the initial state to the

final state, it shows that the architecture design is sound and complete, and the state space

analysis shows that the CP net is operating properly.

In addition to the occurrence graph, Design/CPN is capable of generating a state space report

without executing the net. This report can be generated very quickly, even for large state spaces.

It provides a great deal of useful information about the properties of the CP net that characterize

the behavior of the net for a given marking. The report is divided into four sections: Statistical

Information, Boundedness Properties, Home and Liveness Properties, and Fairness Properties.

These reports can quickly show that the CP net model will behave in the desired manner. Useful

information includes the number of final states, any transitions that will not fire from an initial

marking and the maximum number of tokens and their values that can appear in each place in the

net. This can be the basis for a formal analysis and evaluation of the properties of an information

architecture.

- 55 -

6. PERFORMANCE EVALUATION

It is possible to extend the evaluation of the architecture from logical and behavioral

evaluation to performance evaluation. To do this, the basic CP net model must be modified to

reflect the use of resources and to incorporate processing times and transmission delays. In

general, performance evaluation is a complex subject involving the determination of parameters

that characterize the behavior and structure of system components (these are the performance

parameters in SV-7,) Measures of Performance (MOPs) that quantify attributes of system

behavior, performance requirements, and Measures of Effectiveness (MOEs) that measure how

well a system performs its function. The latter means that we must establish a method of

comparing the measures of performance against the performance requirements to evaluate the

measures of effectiveness.

One of the reasons for creating the executable model of the architecture is to use it to

generate the data needed to determine measures of performance and measures of effectiveness

for the architecture. The architect’s clients are not only interested in the behavior or the

architecture, but also are interested in how well the systems built in conformance with the

architecture meet certain performance goals or requirements. In general, creating a model that

can answer performance questions requires that the model be based on the systems architecture

view in which the functions of the operational view have been allocated to system components

and elements, and a communications system has been specified. The performance parameters of

these physical components of the architecture are then incorporated into the executable model.

The model can then be instrumented to allow the collection of data that is needed to calculate the

values of the measures of performance.

Because of its complexity, a detailed treatment of Performance Evaluation is beyond the

scope of this article. However, we will illustrate some of the fundamental concepts of

performance evaluation using our FastPass example.

In describing the FastPass system, we said that the main reason for OilCo to install it was that

it would attract more customers. This is because it would be more convenient to use than the

conventional “pay at the pump” systems that require the customer to get a credit card out of his

or her wallet or purse. Implied in this rationale is that not only must the FastPass system have

behavior that makes it easy to use, it must also operate in a timely fashion. It is this timeliness

- 56 -

notion that is the main concept behind performance evaluation for FastPass. Indeed, it is the

main measure of performance for our architecture. Furthermore, there is an implied requirement

for this MOP: the time duration for the FastPass system to detect the FastPass device, retrieve the

credit card information, and obtain credit approval, must be at least as fast as the current “pay at

the pump” systems. Let us assume that this requirement is less than 20 seconds, particularly if

the system gives the Driver update messages as it goes through the approval process.

While the complete performance evaluation would require the inclusion of the system

functions in the executable model, it is possible to obtain a high level quick look at the

performance of the architecture using the CP net model already developed. This can be

accomplished by changing the Design/CPN model from an untimed to a timed one and by

providing estimates of processing delays and the time required to transmit messages over the

communications networks.

As described by Kristensen, et al. (1998), Design/CPN supports time by using a global clock

whose values represent model time. In addition to having values, tokens can carry a time value

or time stamp designated by adding a suffix of the form @[t] where t is the value of the time

stamp. The tokens that will carry time stamps must belong to a color set defined as timed in the

Global Declaration Node. Intuitively, t is the model time which is the earliest time the token will

be available for use: if the model time is less than the time stamp value t, the token can not

enable any transition. If the model time is equal or larger than the time stamp value, then the

token is available.

The time stamp of a token is updated in two ways: through the firing of a timed transition or

because of a timed arc expression. A timed transition is a transition having a time region that

contains an expression of the type @+(expression) where expression evaluates to a finite value

that represents the duration of the process represented by the transition. When a timed transition

fires, timed tokens are put in the output places as defined by the output arc expressions with a

time stamp equal to the current model time augmented by the value of the expression of the time

region of the transition. If a transition has no time region, the time stamp associated with the

timed tokens put in the output places is equal to the current model time.

Output arc expressions can also be timed by adding an @+(expression) as a suffix to the

standard arc expression. A timed arc expression can only be used for arcs that connect a

- 57 -

transition to a place whose color set has been defined as timed in the Global Declaration Node.

When a transition fires, timed tokens are put in the output places as defined by the output arc

expressions with a time stamp equal to the current model time augmented by the value of the

time expression of the arc expression.

This use of both time regions for transitions and timed arc inscriptions provides flexibility in

the use of time in CP nets. Sometimes it is more natural to associate a time delay with a process

that is modeled by a transition, and other times a time delay associated with an arc that represents

the transfer of the output of a process to another process is more appropriate. Both models can

be used at the same time in a model. When a timed arc expression is used with a timed transition,

the time expression of the arc expression is added to the transition timed region so that the output

token has a time stamp equal to the current model time augmented by the sum of the two time

regions. We can use these two means of incorporating time in the FastPass model to characterize

the performance of the architecture. We begin by estimating the processing time of each of the

leaf functions of the functional decomposition and communications delays for each of the arcs.

These are summarized in Tables 15 and 16 .

Table 15 Estimated Process Durations

Function/Transition Estimated
Duration

Output Place

Sense FastPass 0 Display
Retrieve Driver Information 10 Display, Driver Account
Validate Credit 0 Financial Transaction
Receive Authorization 0 Display, Authorization Transaction
Dispense Gas 0 Display, Dispensed Gas Data
Compute Cost of Sale 0 Dispensed Gas Data
Request Charge 0 Financial Transaction
Update Accounts 0 (none)
Print Receipt 5 Receipt
Financial Institution:Authorize 5 Authorization Transaction
Financial Institution:Process 5 Bank Transaction
Driver:Present FastPass 0 FastPass Device
Driver:Dispense Gas 0 Selection
Driver:Stop Gas 0 Selection
Driver:Receive Receipt 0 Driver Out

For this analysis, we assume that most of the processes associated with the gas station pump

and office will take milliseconds compared to seconds to send messages over the wide area

networks to retrieve Driver information, request credit authorizations, and update financial

- 58 -

accounts. As a result, we set the time delay for all gas station activities to zero except for the

printing receipt function. We estimate the time to access the Central database to retrieve the

Driver information will take 10 seconds, the time for the Financial Institution to perform the

credit check function and update the account function will take 5 seconds, each. The function to

update the gas station accounts also will take 5 seconds. We also estimate that it will take 5

seconds to print the receipt.

We assume that the FastPass system relies on communications services that can be obtained

from standard vendors. We estimate that the speed of service will be 3 seconds or less.

Table 16 Estimated Communications Delays

Producing Function Information Element
(Color Set)

Receiving Function Communication
Delay

Validate Credit Financial Transaction Financial Institution:
Authorize

3

Financial Institution:
Authorize

Authorization
Transaction

Receive Authorization 3

Request Charge Financial Transaction Financial Institution:
Process

3

Financial Institution:
Process

Bank Transaction Update Accounts 3

These processing and communications delays are incorporated into the CP net in three steps.

A time region specifying the time duration is added to each transition with a non zero processing

duration. A time delay expression is added to each output arc from the producing functions of

Table 16 that is equivalent to the estimated communications delay. Finally, the Color Sets of the

Information Elements of Table 16 and the output places of the transitions with time regions are

declared as timed. We also declare the Driver Out color set as timed so we can determine when

the Driver departs. The CP net model will now execute and provide time stamps for the tokens

in each of the timed places.

Note that we did not provide time durations for Driver actions or for the time it takes to pump

the gas. This is because we are only interested in the time it takes to get the credit approval after

the Driver presents the FastPass device and the time it takes for the drive to get his receipt after

he/she stops pumping gas. Of course these time durations also could be added to determine the

total time a customer spends at a pump, but since they are the same whether FastPass is used or

not, they can be suppressed for this calculation.

- 59 -

By running the simulation, we can collect data to calculate the time duration of various

activities for the model. In particular we find that it takes 21 seconds from the time that the

Driver presents the FastPass device until credit is approved. It takes only 5 seconds for the

Driver to receive the receipt after he/she stops pumping the gas. The Gas station updates its

records 11 seconds after the Driver stops pumping.

We note that time to authorize the pumping of gas exceeds the original requirement of 20

seconds by one second. At this point we have two choices. First we can try to see if the time can

be improved by modifying the architecture. This may be done by changing the structure of the

architecture or by changing the performance parameters of key processors or the

communications links. If these changes are not possible or impractical, we can suggest that the

requirement by adjusted to allow the architecture to meet the requirements. By revealing this

type of performance characteristics, the executable model allows the architect to discuss

behavioral and performance choices with the client.

One important characteristic of Colored Petri Nets is that the occurrence graph of a timed CP

net is a sub-graph of the same CP net that is untimed for a given initial marking. This means that

every state in a timed CP net exists in the untimed net, i.e., if there were no undesirable states in

the untimed CP net, there will be none in the timed CP net.

We can quickly generate the timed occurrence graph of the FastPass model and compare it

with that of the untimed CP net. We have superimposed this occurrence graph on the untimed

occurrence graph as shown in Fig. 38. Again we have suppressed the detailed annotations of the

states and the transitions and substituted more readable descriptions for the transitions. The time

of the firing of each transition has also been provided.

Several observations are in order. From a structural point of view, the sub graph of the

untimed occurrence graph shows that the branching and joining that was associated with the two

concurrent threads has been reduced to a single branch and join after state 13. This branch

occurs because both the “Request Change” and the “Print Receipt” transitions are concurrently

enabled.

- 60 -

Figure 38 Occurrence Graph of Timed CP Net Model of FastPass Architecture

They can fire in either order. No other transition is ready to fire until after both of these

transitions have occurred. Once they have both occurred the time durations and delays cause the

- 61 -

sequence of remaining state changes to be unambiguous resulting in a single chain in the

occurrence graph.

The second observation is more subtle. The annotations have been modified slightly from

those used on the untimed occurrence graph. This was done for the firing of transitions that had

time regions. For example the firing of the print receipt transition on the untimed occurrence

graph was simply labeled “Pump Prints Receipt.” On the timed occurrence graph the annotation

has been changed to “Pump Starts Printing Receipt.” This subtle change is required because of

the method used by Design/CPN to incorporate time in CP nets. When a timed transition fires, it

fires instantly causing a change of state. New tokens are created in the output places of the

transition, but they are not immediately available due to their time stamps. Thus we interpret the

firing of such transitions as meaning the start of the process represented by the transition. The

result of that process will not be available until after the time duration associated with the

transition. In the FastPass example, the pump starts printing the receipt at time t =21 but the

receipt will not be available until 5 seconds later at t = 26. The pump also generates the request

for charge at the same time it starts the receipt printing. This request is generated instantly and is

sent to the Financial Institution. Because we have modeled the communications delay of 3

seconds via the time expression on the arc, this request for charge is available at the Financial

Institution at time t = 24. Thus the Financial Institution starts processing the request at time

t =24.

One of the advantages of using Petri Nets as the executable model is that they provided many

analysis tools that can be used to evaluate the architecture. This simple example illustrates how

the occurrence graph can be a powerful way to visualize the behavior of the model. The state

and transition information generated by the occurrence graph analyzer of Design/CPN provides

most of the data needed for characterizing performance of the architecture. For example, the

performance analysis could be expanded to estimate the timing of the various messages

presented to the Driver. Each of these time delays represents a potential MOP that characterizes

the performance of the system. Developing other analysis techniques for evaluating

architectures using Petri nets is an active area of research.

- 62 -

7. CONCLUSIONS

We have discussed the creation of information architectures in general and explored a

process for creating the Essential and Supporting Products of the DoD C4ISR Architecture

Framework Version 2.0. The Framework, by its depictions of example products, has a

Structured Analysis bias. We have described the Structured Analysis approach, with roots in

systems engineering, and how the architect can use the tools and techniques of Structured

Analysis to produce a coherent set of products for the Operational and Systems views . The

approach provides the necessary and sufficient set of information for creating executable models

of the architecture that can reveal its logical, behavioral, and performance characteristics.

The Framework describes a set of products or views of the architecture. It does not provide

or recommend a process for creating these products. We have developed a strawman process

based on Structured Analysis by reverse engineering from the set of products specified by the

Framework. We have provided a simple example as an existence proof that the process can

work. We recognize that each organization undertaking the development of an information

architecture in the C4ISR domain may have its own preferred approach. We offer this approach

that is based on the interrelationship of the products through the common data elements they

contain as a means of reviewing any proposed approach to determine whether it preserves these

relationships and whether it is capable of producing the particular set of products needed for the

problem at hand.

Our conclusion is that it is feasible for the architect to use the Structured Analysis tools and

techniques to create an information architecture. Once created, the C4ISR Framework products

can be derived from the information contained in the Structured Analysis constructs. Of course,

executable models can also be created and used as a focus of discourse with the customers of the

architecture, even though these are not required by the Framework.

As was briefly discussed, there is a second approach to developing information system

architectures that is a current area of research. The Object-Oriented approach has its roots in

software systems engineering and may have several advantages over Structured Analysis for

developing architectures of the types of information systems of interest to DoD. One main

advantage is that newly trained engineers and computer scientists understand Object-Orientation

much better than Structured Analysis. The third paper of this series [Bienvenu et al., 00]

- 63 -

explores Object-Orientation for creating information system architectures in general as well

converting the Object-Oriented products into the Essential and Supporting products of the C4ISR

Architecture Framework.

References

Bienvenu, M. P., I. Shin, and A. H. Levis, C4ISR Architectures III: An Object-Oriented
approach for architecture design, Systems Engineering, Vol. X, No. y, month, year

C4ISR Architecture Framework Version 2.0. C4ISR Architecture Working Group. Department
of Defense, December 18. 1997.

Jensen, K., Coloured Petri nets, Springer-Verlag, Berlin, 1992

Kristensen, L. M., S. Christensen, and K. Jensen, The Practitioner's Guide to Coloured Petri
Nets, International Journal for Software Tools for Technology Transfer, Springer_Verlag,
1998.

Levis, A. H., and L. W. Wagenhals, C4ISR Architectures I: Developing a process for C4ISR
architecture design, Systems Engineering, Vol. X, No. y, month, year

.

- 64 -

APPENDIX

The architecture products defined in the C4ISR Architecture Framework document, version 2,
are listed below. For a desription, see [C4ISR 97] or [Levis and Wagenhals 00].

Table 1. All View Products

Table 2. Operational Architecture View Products

EssentialApplicable
Architecture

View

All Views
(Context)

All Views
(Terms)

Architecture Product

Overview and Summary
Information

Integrated Dictionary

Product
Reference

AV-1

AV-2

 Essential

Essential

or
Supporting

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

High-level Operational
Concept Graphic

Command Relationships
Chart

Activity Model

Operational Rules Model

Operational State
Transition Description

Operational Event/Trace
Description

Operational Node
Connectivity Description

Operational Information
Exchange Matrix

Logical Data Model

OV-1

OV-4

OV-5

OV-6a

OV-6b

OV-6c

OV-2

OV-3

OV-7

Essential

Essential

Essential

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

- 65 -

Table 3. System Architecture View Products

Systems

Systems

Systems

Systems

Systems

Systems

Systems

Systems

Systems

System Performance
Parameters Matrix

Systems State Transition
Description

Systems Functionality
Description

Operational Activity to System
Function Traceability Matrix

System Information
Exchange Matrix

System Evolution
Description

System Technology
Forecast

Systems Rules Model

Systems Event/Trace
Description

Physical Data Model

SV-4

SV-5

SV-6

SV-7

SV-8

SV-9

SV-10a

SV- 10b

SV -10c

SV-11

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Systems

Systems

System Interface
DescriptionSV-1 Essential

Systems

Systems

Systems Communications
DescriptionSV-2 Supporting

SV-3 Systems2 Matrix Supporting

